研究成果

【代表論文】

超好熱始原菌の耐熱性酵素、糖代謝、形質転換に関する研究

  • [1] K. Nohara, I. Orita, S. Nakamura, T. Imanaka, T. Fukui. Genetic examination and mass balance analysis of pyruvate/amino acids oxidation pathways in the hyperthermophilic archaeon Thermococcus kodakarensis. J. Bacteriol., 196:3831-3839 (2014)
  • [2] P. Harnvoravongchai, H. Kobori, I. Orita, S. Nakamura, T. Imanaka, T. Fukui. Characterization and gene deletion analysis of four homologues of group 3 pyridine nucleotide disulfide oxidoreductases from Thermococcus kodakarensis. Extremophiles, 18:603-616 (2014)
  • [3] T. Awano, A. Wilming, H. Tomita, Y. Yokooji, T. Fukui, T. Imanaka, H. Atomi. Characterization of two members among the five ADP-forming acyl coenzyme A (acyl-CoA) synthetases reveals the presence of a 2-(Imidazol-4-yl)acetyl-CoA synthetase in Thermococcus kodakarensis. J. Bacteriol., 194:140-147 (2014)
  • [4] H. Kobori, M. Ogino, I. Orita, S. Nakamura, T. Imanaka, T. Fukui. Characterization of NADH oxidase/NADPH polysulfide oxidoreductase and its unexpected participation in oxygen sensitivity in an anaerobic hyperthermophilic archaeon. J. Bacteriol., 192: 5192-5202 (2010)
  • [5] T. Sato, T. Fukui, H. Atomi, T. Imanaka. Improved and versatile transformation system allowing multiple genetic manipulations of the hyperthermophilic archaeon Thermococcus kodakaraensis. Appl. Environ. Microbiol., 71, 3889-3899 (2005)
  • [6] T. Fukui, H. Atomi, T. Kanai, R. Matsumi, S. Fujiwara, T. Imanaka. Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus Genomes. Genome Res., 15, 352-363 (2005)

生分解性ポリエステルの微生物合成および微生物分解に関する研究

  • [1] C. Insomphun, H. Xie, J. Mifune, Y. Kawashima, I. Orita, S. Nakamura, T. Fukui. Improved artificial pathway for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with high C6-monomer composition from fructose in Ralstonia eutropha. Metab. Eng. 27:38-45 (2015)
  • [2] R. Shimizu, Y. Dempo, Y. Nakayama, S. Nakamura, T. Bamba, E. Fukusaki, T. Fukui. New insight into the role of the Calvin cycle: Reutilization of CO2 emitted through sugar degradation. Sci. Rep. 5:11617 (2015)
  • [3] I. Orita, K. Nishikawa, S. Nakamura, T. Fukui. Biosynthesis of polyhydroxyalkanoate copolymers from methanol by Methylobacterium extorquens AM1 and the engineered strains under cobalt-deficient conditions. Appl. Microbiol. Biotechnol., 98:3715-3725 (2014)
  • [4] T. Fukui, K. Chou, K. Harada, I. Orita, Y. Nakayama, T. Bamba, S. Nakamura, E. Fukusaki. Metabolite profiles of polyhydroxyalkanoate-producing Ralstonia eutropha H16. Metabolomics, 10:190–202 (2014)
  • [5] J. Mifune, S. Nakamura, T. Fukui. Engineering of pha operon on Cupriavidus necator chromosome for efficient biosynthesis of poly(3-hydroxybutrate-co-3-hydroxyhexanoate) from vegetable oil. Polym. Deg. Stab., 95, 1305-1312 (2010)
  • [6] T. Fukui, M. Suzuki, T. Tsuge, S. Nakamura. Microbial synthesis of poly(3-hydroxybutyrate-co-3-hydroxypropionate) from unrelated carbon sources by engineered Cupriavidus necator. Biomacromolecules, 10, 700-706 (2009)

【主な日本語総説】

  • [1] 「遺伝子組換え微生物による軟質系バイオプラスチックの効率的生合成」
    マテリアルステージ、技術情報協会、10, No.1, 19-22 (2011)
  • [2] 「極限酵素を利用する」 酵素・タンパク質をはかる・とらえる・利用する、工学図書、113-123 (2009)

ページ上部へ