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Biological  Chemical  Production  from  CO2 
 

Shota Atsumi 
 

Department of Chemistry, University of California, Davis, CA, USA 
satsumi@ucdavis.edu 

 
 

Chemical production in photosynthetic organisms is a nascent technology with great 
promise for renewable chemical production. Cyanobacteria are under investigation as a 
means to utilize light energy to directly recycle CO2 into renewable chemical compounds 
currently derived from petroleum. However, while genetic engineering tools are readily 
available for model organisms such as Escherichia coli and Saccharomyces cerevisiae, 
this is not the case for cyanobacteria. We have previously engineered production of the 
chemical feedstock 2,3-butanediol (23BD) from an obligate photoautotrophic 
cyanobacterium, Synechococcus elongatus PCC 7942 [1]. We subsequently explored the 
optimization of 23BD production by varying ribosomal binding site and promoter 
strength, operon organization, and gene expression at the transcriptional and translational 
level [2]. The resulting engineered strains exhibited enhanced total carbon fixation and 
23BD production under continuous light conditions. Any large-scale cyanobacterial 
production scheme may rely on natural sunlight for energy, thereby limiting production 
time to only lighted hours during the day. To overcome this limitation we engineered S. 
elongatus for production of 23BD in continuous light, diurnal light, and continuous dark 
conditions via supplementation with sugars [3, 4]. To improve glucose utilization, 
enhance CO2 fixation and increase chemical production, modifications were introduced 
to glycolytic pathways and the Calvin Benson cycle [5]. These modifications are designed 
to increase carbon flux and redirect it towards carbon fixation. The engineered strain 
efficiently uses both CO2 and glucose, and produces 12.6 g/L of 23BD with a rate of 
1.1g/L/d under continuous light conditions [5]. This presentation will cover ongoing work 
with this system, which focuses on improving 23BD titers in variety of lighting and media 
conditions through further exploration of modifications to sugar metabolism and CO2 
fixation. 

 



  

 

 
Fig. 1 Summary of cyanobacterial 23BD production developed in the Atsumi lab 
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Self-replication is a fundamental property of living systems inherited from the origin 
of life. To achieve self-replication, cells must replicate their genetic information. In 
Escherichia coli, replication of the circular chromosome (4.6 Mb) starts from a single 
replication origin, oriC. A series of replication reactions have been reconstituted in vitro 
using purified proteins more than 30 years ago (Kaguni and Kornberg, 1984 Cell). 
However continuous repetition of the replication cycle has not been achieved yet. 
Recently we developed the replication cycle reaction (RCR) by in vitro reconstitution of 
the whole replication cycle of the E. coli chromosome using 25 proteins (Fig. 1) [1, 2]. 
The cycle consists of replication initiation at oriC, bidirectional progression of replication 
forks, completion of replication, and segregation of two daughter circular DNA molecules. 
The segregation process produces monomeric circular DNA that is topologically identical 
to the input template DNA, thus allowing autonomous repetition of the replication cycle 
under isothermal conditions. Indeed, RCR can propagate circular DNA exponentially 
even from a single DNA molecule. Because RCR uses the chromosome-replication 
system, large DNAs (longer than 200 kb) can be propagated as intact circular DNA 
molecules, and the replication fidelity is extremely high (approximately 1.2 × 10-8 errors 
per base per cycle) [1]. 

 
Fig. 1 Replication Cycle Reaction (RCR)  

 
 So far, conventional DNA cloning relies on living host cells like E. coli, which is 

time-consuming and labor-intensive. In addition, some sequences are toxic or unstable in 
the cells. RCR now provides a powerful tool to generate large circular DNA without 

Initiation

Fork progression

Okazaki-
fragment
maturation

Re-initiation

Decatenation

RNaseH
Pol I
Ligase

ParE
ParC
Topo III
RecQ

DnaB Helicase
DnaC Helicase loader
GyrA
GyrB
SSB
DnaG Primase

Gyrase

Topo IV

Clam
p 

Loader

Pol III H
E

Core 
Polym

erase

DnaN Clamp
DnaX
HolA
HolB
HolC
HolD
DnaE
DnaQ
HolE

IHF

DnaA
IhfA
IhfB

oriC

30˚C

RCRx 2
30˚C



  

 

relying on living hosts. We here developed a novel DNA assembly reaction, termed RA 
(Recombination Assembly), in which multiple fragments with overlapping ends are 
efficiently ligated in a single-step isothermal reaction. When circular assembly products 
of RA was subjected directly to the RCR propagation, only the target circular DNA 
molecules but not linear intermediate molecules were selectively propagated because 
RCR requires a circular form of template DNA (Fig. 2). Using this two-step reaction, 
termed RA-RCR, we have successfully constructed a 27 kb plasmid from 50 fragments. 
The RA-RCR method could provide cell-free approach towards whole genome synthesis 
(or Genome Project-write) from scratch. 

 
Fig.2 Two step cell-free cloning using RA-RCR 

 
My ultimate research goal is to reconstruct the self-replication phenomenon of living 

cells using biological building blocks. The “transcription” and “translation” reaction has 
been reconstituted in vitro and commercially available as PURE system (Shimizu et al., 
2001 Nat. biotech.). RCR provides the remaining Central-Dogma component, 
“replication.” I will show our approach towards self-replication reaction by integration of 
RCR and PURE system (Fig 3), and also discuss about in vitro evolution of genetic 
information during the self-replication reaction. 

 

 
Fig. 3 Self-replication reaction by integration of “Central-Dogma” sub-systems 
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Proteolytic  system  of  lactobacilli  and  functional  peptides  
in  the  fermented  milk  

 
Naoyuki Yamamoto 

 
School of Life Science and Technology, Tokyo Institute of Technology, Japan 

n-yamamoto@bio.titech.ac.jp 
 

Lactic acid bacteria have proteolytic system to decompose milk proteins and utilize 
the peptides as nitrogen sources. Among lactic acid bacteria, Lactobacillus helveticus has 
the highest proteolytic activity and releases various functional peptides in the fermented 
milk. Many kinds of antihypertensive peptides originating from food protein hydrolysates 
have been reported ever. Hypertension is a major risk factor in cardiovascular disease, 
such as heart disease and stroke. Most of the reported antihypertensive peptides have 
inhibitory activities against angiotensin I-converting enzyme (ACE) that catalyzes release 
of the potent vasoconstrictor, angiotensin II from angiotensin I.   

In our study, antihypertensive peptides, Val-Pro-Pro (VPP) and Ile-Pro-Pro (IPP) 
were isolated from L. helveticus fermented milk. These peptides showed significant 
antihypertensive effects on subjects with high blood pressure and also improved arterial 
stiffness which is a crucial parameter for cardiovascular risk.  

For about proteolytic system involved in the processing of VPP and IPP, a novel 
protein with affinity to upstream of proteolytic enzyme genes in the presence of BCAA 
was identified in L. helveticus. Topics about the regulatory system and the impact on VPP 
and IPP productions will be discussed in my talk. 

 

 

Figure. Regulatory system in L. helveticus proteolytic system 
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In human intestine, 100 trillion bacteria comprising more than 100 different species 
live together in dense, interdependent communities, which is known as gut microbiota. 
Gut microbiota performs numerous important functions such as nutrient acquisition, 
development and maintenance of gut immune system, and protection against exogenous 
pathogens. Innovation of analytical technologies including next generation sequencing 
and ‘-omics’ (transcriptomic, proteomic and metabolomic) approaches allowed us to get 
much deeper insights into the functional role of gut microbiota. As a result, there has been 
growing evidence that imbalances in gut microbial communities, described as dysbiosis, 
are associated with pathogenesis of both intestinal and extra-intestinal disorders. Based 
on the accumulating knowledge, many health care companies especially in USA and 
Europe started to pay attention to gut microbiota as drug candidates.  

In this seminar, I would like to introduce recent findings in the reciprocal crosstalk 
between host and gut microbiota in health and diseases. 
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Powered by high-speed high-throughput next-generation genomic technologies, life 
science and biotechnology are being transformed. In our laboratory, we apply genomic 
and metagenomic tools to study model microbes and microbial communities. Multi-omics 
systems-level understanding of the Escherichia coli cell factory may open the door to 
synthetic biology and next-generation biotechnology. Analysis of genomes sampled from 
a long-term evolution experiment revealed that the coupling between genomic and 
adaptive evolution is complex and can be counterintuitive even in a constant environment 
[1]. The microbiome, comprised of the microbiota and its collective genomes called the 
metagenome, is an integral part of our body and the ecosystem. Systems understanding 
of host physiology can be possible only if the microbial counterparts that reside in are 
fully appreciated and both are considered as a unit, i.e. holobiont. Recent analyses reveal 
that a myriad of microbial members, mutualistic, commensal, or pathogenic to the host, 
play pivotal roles in health and disease by producing diverse macromolecules and 
metabolites. Host-microbiota relationships in the plant rhizosphere [2] and the human 
gastrointestinal tract, as well as the dynamics of microbial communities, will be presented 
as examples. In the talk, efforts to develop probiotics or more preferably pharmabiotics 
for the prevention or treatment of gastrointestinal cancers will also be presented. 
Synthetic biology concepts and toolkits enable us to modulate the microbiome to maintain 
(eubiosis) or regain (rebiosis) homeostasis, and even to transform it to become preventive 
or curative. 
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Over the past 35 years, researchers have explored seafloor deep-sea hydrothermal vent 
environments around the globe and studied a number of microbial ecosystems there, 
which is now called as Dark Energy Ecosystems. Bioinformatics and interdisciplinary 
geochemistry-microbiology approaches have provided new ideas on the diversity and 
community composition of microbial life living in deep-sea vents. In particular, recent 
investigations have revealed that the community structure and productivity of 
chemolithotrophic microbial communities in the deep-sea hydrothermal environments are 
controlled primarily by variations in the geochemical composition of hydrothermal fluids. 
 
This was originally predicted by a thermodynamic calculation of energy yield potential 
of various chemolithotrophic metabolisms in a simulated hydrothermal mixing zone. The 
prediction, called as McCollom and Shock’s prediction, has been finally justified by the 
relatively quantitative geomicrobiological characterizations in various deep-sea 
hydrothermal vent environments all over the world. Thus, there should be a possible 
principle that the thermodynamic estimation of chemolithotrophic energy yield potentials 
could predict the realistic chemolithotrophic living community in any of the deep-sea 
hydrothermal vent environments in this planet. Once such a principle is realized, the 
principle can be applied not only to exploration of extant dark energy ecosystem but also 
to understanding of the most ancient dark energy ecosystem in the Earth and even the 
likely extraterrestrial dark energy ecosystems in our solar system. 
 
In addition, recent electrochemical studies of deep-sea hydrothermal mineral deposits and 
environments have pointed to the existence of microbial ecosystem beyond McCollom 
and Shock’s prediction. 
 
     



  

 

  


